	FIBER OPTICS	and NETWORKS	
•	mester, Electronic		
	Choice Based Cre		
Course Code	17EC82	CIE Marks	40
Number of	4	SEE Monte	60
Lecture Hours/Week	4	SEE Marks	00
Total Number of	50(10 Hours /		
Lecture Hours	Module)	Exam Hours	03
		ITS - 04	
Course Objectives:	_		
•	orinciple of optical f		on with different
modes of light pr			
	transmission chara	cteristics and loss	ses in optical fiber
			ptical communication
networks.	components and its		
	rk standards in ont	ical fiber and und	erstand the network
	ong with its function		cistanu inc network
architectures all			
	Mod	ule -1	
Ontical fiber Com			t, The general system
-		-	fiber waveguides: Ray
<u> </u>		· _	e and group velocity
			ex fibers, Single mode
-	=		refractive index. Fiber
	c crystal fibers. (Te		Tendedve maex. Tibe
	<u> </u>	ule -2	
Transmission ch			Attenuation, Materia
		-	cattering losses, Fiber
-	6	-	itermodal dispersion
Multimode step ind			dispersion
Multimode step me			
Ontical Fiber Co	nnectors: Fiber al	ignment and ioir	nt loss, Fiber splices
-	Fiber couplers. (Text	0	it 1055, Tiber Splices
	- ·		
		ule -3	
-			rect Bandgaps, Ligh
6			s, Quantum Efficiency
			Threshold conditions
- '	-	•	nt frequencies, Lase
Diode structures a	nd Radiation Patter	ns: Single mode la	asers.
	• • •	of Photodiodes,	Photodetector noise
Detector response	tıme.		
-	-	-	sources, Front End
Amplifiers, Receive	r sensitivity, Quant	um Limit. (Text I)	LI, LZ

WDM Concepts and Components: Overview of WDM: Operational Principles of WDM, WDM standards, Mach-Zehnder Interferometer Multiplexers, Isolators and Circulators, Fiber grating filters, Dielectric Thin-Film Filters, Diffraction Gratings, Active Optical Components, Tunable light sources,

Optical amplifiers: Basic application and Types, Semiconductor optical amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers, Wideband Optical Amplifiers. (Text 1) **L1, L2**

Module -5

Optical Networks: Optical network evolution and concepts: Optical networking terminology, Optical network node and switching elements, Wavelength division multiplexed networks, Public telecommunication network overview. Optical network transmission modes, layers and protocols: Synchronous networks, Asynchronous transfer mode, OSI reference model, Optical transport network, Internet protocol, Wavelength routing networks: Routing and wavelength assignment, Optical switching networks: Optical circuit switched networks, packet switched networks, Multiprotocol Label Switching, Optical burst switching networks, Optical network deployment: Long-haul networks, Metropoliton area networks, Access networks, Local area networks. (Text 2) **L1, L2**

Course Outcomes: At the end of the course, students will be able to:

- 1. Classification and working of optical fiber with different modes of signal propagation.
- 2. Describe the transmission characteristics and losses in optical fiber communication.
- 3. Describe the construction and working principle of optical connectors, multiplexers and amplifiers.
- 4. Describe the constructional features and the characteristics of optical sources and detectors.
- 5. Illustrate the networking aspects of optical fiber and describe various standards associated with it.

Text Books:

- 1. Gerd Keiser , Optical Fiber Communication, 5th Edition, McGraw Hill Education(India) Private Limited, 2015. ISBN:1-25-900687-5.
- John M Senior, Optical Fiber Communications, Principles and Practice, 3rd Edition, Pearson Education, 2010, ISBN:978-81-317-3266-3

Reference Book:

Joseph C Palais, Fiber Optic Communication, Pearson Education, 2005, ISBN:0130085103